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Abstract

Background: GenoLab M is a recently established next-generation sequencing platform from GeneMind
Biosciences. Presently, Illumina sequencers are the globally leading sequencing platform in the next-generation
sequencing market. Here, we present the first report to compare the transcriptome and LncRNA sequencing data of
the GenoLab M sequencer to NovaSeq 6000 platform in various types of analysis.

Results: We tested 16 libraries in three species using various library kits from different companies. We compared
the data quality, genes expression, alternatively spliced (AS) events, single nucleotide polymorphism (SNP), and
insertions–deletions (InDel) between two sequencing platforms. The data suggested that platforms have
comparable sensitivity and accuracy in terms of quantification of gene expression levels with technical
compatibility.

Conclusions: Genolab M is a promising next-generation sequencing platform for transcriptomics and LncRNA
studies with high performance at low costs.
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Background
The past dozens of years have witnessed a new era in
functional genomics using sequencing technologies [1].
The launch of the Roche 454 sequencer opened the era
of next-generation sequencing (NGS) [2]. Compared
with the traditional Sanger sequencing technology [3],
NGS has significantly higher throughput and reduced
costs [1]. Taking advantages of the power of NGS,
transcriptome and Long non-coding RNA (LncRNA)
sequencing has been accepted as a mainstream profiling
technique to reveal gene regulatory networks in both
animals and plants [4].

In the short history of NGS era, many sequencing plat-
forms have emerged: Roche 454, Illumina series (GA,
HiSeq, NextSeq, NovaSeq, etc.) [5], BGI (BGISEQ-500)
[6], Ion Torrent [7], GenapSys [8]. These platforms
employ different sequencing chemistry and detection ap-
proaches, and each of them has specific advantages and
shortcomings [9]. After years of technology evolution
and product commercialization, Illumina sequencers be-
come the most widely used platform. However, the high
instrument and reagent cost hinders broader applica-
tions [10]. In recent years, BGI’s MGI sequencers have
received more attention in their cost effectiveness [11],
though BGI’s unique DNB (DNA Nanoball) sequencing
approach requires complicated library preparation and
quality control procedure [12–15]. As DNA sequencing
applications increase in different research fields and
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clinical settings, there is still a need to develop se-
quencers that are accurate, flexible, and cost-efficient for
applications.
Recently, GeneMind Biosciences Company Limited

(GeneMind), launched a new sequencing instrument
(GenoLab M™) based on their previous work on Geno-
Care™ single molecule sequencer [16]. An overview of
the mechanism of GenoLab M DNA sequencer is out-
lined in Fig. 1. The GenoLab M sequencer employs
sequencing-by-synthesis (SBS) techniques and applies
reversible termination approaches. In a sequencing run,
a double-stranded target DNA library is constructed
with generic adaptor sequences. The library is denatured
to create single-stranded templates, which are captured
on the surface of flow cell through hybridization to ran-
domly pre-immobilized complimentary oligonucleotide.
Surface-based amplification is performed after target

DNA template capture to enhance signal-to-noise ratio
of sequencing. The amplified DNA colonies on the flow
cell are then hybridized to a sequencing primer, which
contains an adaptor-complimentary sequence. Next,
Fluorescence-dye labeled nucleotides and a polymerase
are applied to start the sequencing cycle. In each cycle,
the nucleotides’ terminator structure ensures only one
nucleotide is incorporated by the polymerase on each
extending primer. Four-color fluorescence signals from
the labels are collected by a scanning optical system, and
the terminator structure is cleaved to initiate the next
sequencing cycle. The fluorescence image data through
all cycles are then combined and color-corrected to gen-
erate the raw basecall data. Finally, Sequencing quality
score are assigned to each base, DNA reads with the cor-
responding quality scores are combined to produce the
final fastq file.

Fig. 1 Sequencing Workflow of GenoLab M

Table 1 Summary of basic parameters in six transcriptome and four LncRNA sequencing datasets

Sample ID Species RNA Type GenoLab M (PE100) NovaSeq 6000 (PE150)

Reads (M) Bases (Gb) Q20(%) Reads (M) Bases (Gb) Q20(%)

T1–3301-2-AB Bean Transcriptome 33.75 6.74 95.65 24.67 7.36 97.45

T1–3301-2-VZ Bean Transcriptome 139.69 27.81 94.25 38.55 11.40 97.33

T1–3301-2-YS Bean Transcriptome 26.86 5.36 95.90 23.20 6.91 97.39

T1-TGF-AB Human Transcriptome 33.54 6.70 95.06 25.36 7.58 97.64

T1-TGF-TG Human Transcriptome 29.30 5.86 94.31 30.29 9.06 97.58

T1-TGF-VZ Human Transcriptome 79.46 15.85 93.49 33.49 9.88 97.54

T1-TGF-YS Human Transcriptome 31.10 6.21 95.35 24.09 7.20 97.62

T1-C1-AB Mouse Transcriptome 50.48 10.08 94.04 26.30 7.86 97.52

T1-C1-VZ Mouse Transcriptome 78.00 15.55 93.24 36.78 10.96 97.26

T1-C1-YS Mouse Transcriptome 27.57 5.51 94.74 24.20 7.23 97.73

T2-TGF-TG Human LncRNA 59.77 11.94 95.07 44.71 13.27 97.37

T2-TGF-VZ Human LncRNA 64.01 12.79 95.63 62.87 18.67 97.95

T2-TGF-YS Human LncRNA 36.74 7.34 94.89 32.83 9.79 97.35

T2-C1-TG Mouse LncRNA 69.69 13.92 95.05 50.33 14.94 97.32

T2-C1-VZ Mouse LncRNA 69.91 13.97 95.52 39.80 11.90 97.42

T2-C1-YS Mouse LncRNA 52.03 10.39 95.58 34.40 10.25 97.57

Liu et al. BMC Genomics          (2021) 22:829 Page 2 of 12

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



NovaSeq 6000, launched in June, 2017, relies on Illu-
mina’s SBS chemistry and two-color reversible
terminator-based method. Combined with patterned
flow cell technology [17], in excess of 3000 Gb of data
can be sequenced on an S4 flow cell.
Previously, GenoLab M’s performance on transcrip-

tome and LncRNA has not yet been evaluated by the sci-
entific community. Here, we characterized the
performance of GenoLab M on transcriptome and
LncRNA by parallel comparison with NovaSeq 6000
from Illumina, Inc. on three different species: mouse,
bean, and human. The raw data quality, gene expression
level, alternatively spliced (AS) events, single nucleotide
polymorphism (SNP), and insertions–deletions (InDel)
analysis from the two sequencing platforms are com-
pared. The data suggest that the GenoLab M is a prom-
ising sequencing platform for transcriptomics and
LncRNA studies in animal, plant and human with com-
parable performance at lower cost.

Method
Samples preparation and RNA extraction
Mouse testicular tissue, human Lieming Xu-2 cells and
bean hairy root tissue were collected for RNA extraction.
RNAs were extracted by HiPure Universal RNA Mini
Kit (Guangzhou Magen Biotechnology Co., Ltd.). Total
RNA concentration and purity and integrity were mea-
sured via NanoDrop 2000 (Thermo Fisher Scientific,
Wilmington, DE) and RNA Nano 6000 Assay Kit of the
Agilent Bioanalyzer 2100 system (Agilent Technologies,
CA, USA), respectively.

Transcriptome and LncRNA sequencing
Transcriptome library construction were performed by
Hieff NGS Ultima Dual-mode mRNA Library Prep Kit
for Illumina (Yeasen Biotechnology (Shanghai) Co., Ltd.,
China), Fast RNA-seq Lib Prep Module for Illumina
(ABclonal Technology Co.,Ltd., China), TIANSeq
Stranded RNA-Seq Kit (Illumina) (TIANGEN Biotech

Fig. 2 Comparison of sequencing quality between GenoLab M and NovaSeq 6000 in genome mapping rate. A Transcriptome of mouse, B
LncRNA of mouse, C Transcriptome of human, D LncRNA of human, E Transcriptome of bean. AB_, VZ_, YS_,TG_ means library kits from
four companies
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(Beijing) Co., Ltd., China) and VAHTS Universal V6
RNA-seq Library Prep Kit for Illumina (Vazyme Biotech
Co., Ltd., China). These mRNA libraries were marked as
Mouse, Human or Bean_mRNA_YS, AB, TG or VZ.
LncRNA library were constructed via Hieff NGS Ultima
Dual-mode RNA Library Prep Kit for Illumina and Hieff
NGS MaxUp rRNA Depletion Kit (human/mouse/rat)

(Yeasen Biotechnology (Shanghai) Co., Ltd., China),
VAHTS Universal V6 RNA-seq Library Prep Kit for Illu-
mina and Ribo-off rRNA Depletion Kit (Human/Mouse/
Rat) (Vazyme Biotech Co.,Ltd., China), TIANSeq
Stranded RNA-Seq Kit (Illumina) and TIANSeq rRNA
Depletion Kit (H/M/R) (NR101-TA) (TIANGEN Biotech
(Beijing) Co.,Ltd.,China). These libraries were marked as

Fig. 3 Comparison of sequencing quality between GenoLab M and NovaSeq 6000 in Reads distribution along the relative position of genes. A
Transcriptome of mouse, B LncRNA of mouse, C Transcriptome of human, D LncRNA of human, E Transcriptome of bean. M_, H_ and B_ means
mouse, human and bean, AB_, VZ_, YS, TG_ means library kits from four companies, N and G means Novaseq 6000 and GenoLab M
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Mouse or Human_LncRNA_YS, VZ or TG. After library
QC, they were subjected to NovaSeq 6000 and GenoLab
M sequencing in PE150 or PE100 mode.

Cross-platform mRNA and LncRNA sequencing data
analysis
Raw sequencing reads in fastq format were processed
through a GeneMind in-house perl pipeline. Reads

containing adapter, ploy-N or low-quality reads were fil-
tered out to get clean reads. These clean reads were then
mapped to the reference genome sequence with a per-
fect match or one mismatch method via HISAT2 tools
software [18]. The corresponding genome references
were downloaded from ensemble database by ftp://ftp.
ensembl.org/pub/release-101/fasta/homo_sapiens/dna/,
ftp://ftp.ensembl.org/pub/release-101/fasta/mus_

Fig. 4 Repeatability of gene detection and quantifcation between GenoLab M and NovaSeq 6000 in expression density distribution. A
Transcriptome of mouse, B LncRNA of mouse, C Transcriptome of human, D LncRNA of human, E Transcriptome of bean. M_, H_ and B_ means
mouse, human and bean, AB_, VZ_, YS, TG_ means library kits from four companies, N and G means Novaseq 6000 and GenoLab M

Fig. 5 Gene and lncRNA detection and quantifcation between GenoLab M and NovaSeq 6000 in boxplot graph of A human, B mouse, C bean.
AB_, VZ_, YS_,TG_ means library kits from four companies, N and G means Novaseq 6000 and GenoLab M
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musculus/dna, and ftp://ftp.ensemblgenomes.org/pub/
plants/release-48/fasta/glycine_max/dna/. StringTie [19]
was then used for transcript reconstruction. As candi-
date genes were defined as genes which were mapping
to unannotated transcribed region, meanwhile, coding
peptide was more than 50 amino acid residues with two
or more exons. SNP and InDel calling was carried out
by using GATK [20], furthermore, SnpEff [21] was used
to annotate these mutations. Raw vcf files were filtered
with GATK standard filter method and other parameters
(clusterWindowSize:10; MQ0 > = 4 and (MQ0/
(1.0*DP)) > 0.1; QUAL < 10; QUAL < 30.0 or QD < 5.0
or HRun > 5), and only SNPs with distance > 5 were
retained. Alternative spliced events were identified by
ASprofle software [22]. Expression values of candidate
genes (FPKM) were calculated by RSEM [23].
For LncRNA identification, bioinformatic pipeline was

performed according to published methods [24] with
minor modifications. The transcriptome was assembled
using the StringTie based on the reads mapped to the
reference genome. The known LncRNAs from the as-
sembled transcripts are defined using the Cuffcompare
program from the Cufflinks package. The remaining
transcripts (unknown transcripts) were used to screen
for putative LncRNAs. Transcripts of more than 200 nt
length and two exons were selected as candidate
LncRNA transcripts. Then, CPC [25], CNCI [26], Pfam

[27] and CPAT [28] were used to distinguish the
protein-coding genes from the non-coding genes, and
inter set as putative LncRNA. As well as the different
types of LncRNAs including lincRNA, intronic LncRNA,
anti-sense LncRNA, sense LncRNA were selected using
gffcompare. StringTie (1.3.1) [29] was used to calculate
FPKMs of LncRNAs. The FPKM of novel LncRNAs
must be ≥0.1.

Results
Base and raw data quality
Following RNA extraction, two aliquots of each ex-
tract were constructed as Illumina libraries, respect-
ively, using identical amounts of starting material, and
then subsequently sequenced to facilitate bioinfor-
matic comparisons on the data. In addition, to verify
the compatibility of the library preparation kit for
GenoLab M, we used kits from different manufac-
turers for testing (Supplemental Table S1). The se-
quencing strategy was pair-end 100 bp for GenoLab
M and paired-end 150 bp for NovaSeq 6000. We ini-
tially generated between 23.20 M to 62.87 M clean
reads per library in NovaSeq 6000 platform, and
26.86M to 139.69 M clean reads per library in Geno-
Lab M platform (Table 1). Each individual sample has
similar base throughput from both sequencing plat-
forms. The quality of sequencing data was checked

Fig. 6 Venn diagram of genes expression FPKM between GenoLab M and NovaSeq 6000 in mouse. A Transcriptome, B LncRNA. AB_, VZ_,
YS_,TG_ means library kits from four companies, N and G means Novaseq 6000 and GenoLab M
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using FastQC. For high base quality (over Q20) base
percentages, the GenoLab M showed an average of
94.86%, and the NovaSeq 6000 showed an average of
97.50% with a slight preponderance (Table 1). As
shown in Fig. 2, the clean reads from GenoLab M
reached an average mapping rate of 91.80% and an
average unique mapping rate of 88.33%, which are
comparable to the mapping rates of reads from the
NovaSeq 6000 platform. The two platforms shared
fairly consistent reads distribution along genes across
species (Fig. 3) and in expression density distribution
(Fig. 4). Interestingly, the LncRNA expression level
measured using Yeasen LncRNA library kit (YS) is
higher than the other kits used in human and mouse.
In Fig. 5, the charts showed that accuracy in the
quantification of both low and high abundance genes
were consistent. They further indicate that LncRNA
expression by YS has obviously higher abundancy
than the other kits in human and mouse (Fig. 5 A
and B), which is consistent with the Fig. 4 B and D.

Overall, the sequence quality of the two platforms
was similar across various library kits.

Inter-platforms comparison of gene detection and
quantification
In transcriptome and LncRNA analysis, the identifica-
tion of genes is very important for the majority of re-
search projects. Therefore, we further compared the
capacity of GenoLab M and NovaSeq 6000 platforms
on gene detection and quantification. Totally over
42,000, 16,000 and 26,000 genes were identified in
bean, human, and mouse, respectively, via two se-
quencing platforms (Fig. 6A, Fig.S1A&B). For tran-
scriptome, we observed a small fraction of different
genes between the GenoLab M and NovaSeq 6000
platforms. Over 92% of genes were commonly de-
tected by both sequencing platforms. However, for
LncRNA, only 71% of genes were shared between the
two sequencing platforms (Fig. 6B, Fig. S1C). This
difference most likely stemmed from analysis using

Fig. 7 Scatter plots of gene expression values of the four pairs of samples produced using the NovaSeq 6000 and GenoLab M sequencers. Gene
expression values are represented as the base 2 logarithm of FPKM. The Pearson correlation coefficients of the 16 samples were between 0.69
and 0.99. A Transcriptome of bean, B Transcriptome of human, C Transcriptome of mouse, D LncRNA of human, E LncRNA of mouse
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the method StringTie as novel LncRNAs judgment
and the different read length of the sequence [19].
StringTie (1.3.1) was used to calculate FPKMs of
LncRNAs and novel LncRNA was set at least 0.1. We
checked the Pearson correlation coefficient of the
transcriptome and LncRNA data produced by the two
platforms using the same methods and found that all
one pairs of samples showed high correlation coeffi-
cients, ranging from 0.972 to 0.992 in transcriptome,
and ranging from 0.691 to 0.793 in LncRNA (Fig. 7).
There is still a slight gap in the correlation between

LncRNA and the two platforms. In all, GenoLab M
has remarkable inter-platforms concordance with
NovaSeq 6000, suggesting that GenoLab M could sub-
stitute NovaSeq 6000 in many application fields where
transcriptome and LncRNA are the primary focus.

Detection of alternative splicing
As one of the major mechanisms to generate transcrip-
tome diversity, alternative splicing (AS) is gaining more
and more attention in recent years. In this context, the
ability of each sequencing platform under comparison to

Fig. 8 Alternative splicing events of mRNA and lncRNA FPKM between GenoLab M and NovaSeq 6000. A Transcriptome of bean, B
Transcriptome of human, C Transcriptome of mouse, D LncRNA of human, E LncRNA of mouse. TSS: Alternative 5′ first exon (transcription start
site), TTS: Alternative 3′ last exon (transcription terminal site), SKIP: Skipped exon (SKIP_ON,SKIP_OFF pair), XSKIP: Approximate SKIP
(XSKIP_ON,XSKIP_OFF pair), MSKIP: Multi-exon SKIP (MSKIP_ON,MSKIP_OFF pair), XMSKIP: Approximate MSKIP (XMSKIP_ON,XMSKIP_OFF pair), IR:
Intron retention (IR_ON, IR_OFF pair), XIR: Approximate IR (XIR_ON,XIR_OFF pair), MIR: Multi-IR (MIR_ON, MIR_OFF pair), XMIR: Approximate MIR
(XMIR_ON, XMIR_OFF pair), AE: Alternative exon ends (5′, 3′, or both), XAE: Approximate AE
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detect splicing junctions and corresponding alternative
splicing patterns were subsequently analyzed across
transcriptomes. In mouse, 53,557, 59,709 and 53,014,
56,741, 64,105 and 48,089 AS events could be detected
by GenoLab M and NovaSeq 6000, respectively. Top
three AS events in all libraries were TSS: Alternative 5′
first exon (transcription start site), TTS: Alternative 3′
last exon (transcription terminal site) and AE: Alter-
native exon ends (5′, 3′, or both) cross two platforms
(Fig. 8 A). In mouse LncRNA data, the AS events
component in mRNA presented similarly to transcrip-
tome (Fig. 8 B). For human sample, AS events com-
ponent in transcriptome and mRNA of LncRNA data
were of the same pattern and Top 3 AS were TSS,

TTS and SKIP:Skipped exon (SKIP_ON,SKIP_OFF
pair) as showed in Fig. 8 C and D. In beans, 78,137,
82,558 and 105,038, 83,072, 84,526 and 90,580 AS
events could be detected by GenoLab M and NovaSeq
6000, respectively. Top three AS events in all libraries
were TSS, TTS and AE (Fig. 8 E). As for both the
number and the type of different AS events, we found
that there was no significant difference between the
three species in the two platforms.

Identification of SNP and InDel mutation
SNP and InDel are crucial genomic features to reveal
genetic variation. High throughput transcriptome ana-
lysis contributes to how these DNA variations can be

Table 2 Summary of SNP identifcation in all samples

Sample A- >
G

G- >
A

C- > T T- > C Transition A- >
C

C- >
A

A- >
T

T- >
A

C- >
G

G- >
C

G- >
T

T- >
G

Transversion Total

Bean_mRNA_AB_N 13,754 13,281 13,327 13,609 53,971 4549 4512 6766 6591 3330 3342 4450 4538 38,078 92,049

Bean_mRNA_VZ_N 13,260 12,819 12,938 13,308 52,325 4381 4402 6479 6294 3260 3277 4268 4414 36,775 89,100

Bean_mRNA_YS_N 13,360 12,847 12,998 13,244 52,449 4339 4409 6552 6401 3268 3275 4336 4472 37,052 89,501

Bean_mRNA_AB_G 13,267 12,816 12,876 13,047 52,006 4357 4425 6772 6430 3213 3214 4337 4416 37,164 89,170

Bean_mRNA_VZ_G 15,421 14,791 14,768 15,323 60,303 4991 5084 7545 7311 3787 3796 4997 5031 42,542 102,845

Bean_mRNA_YS_G 12,393 11,956 11,975 12,390 48,714 4050 4093 6223 6012 3024 2989 4050 4056 34,497 83,211

Human_mRNA_
AB_N

28,147 19,847 19,745 27,765 95,504 4212 4279 3205 3296 5208 5153 4161 4283 33,797 129,301

Human_mRNA_
TG_N

26,667 19,444 19,386 26,452 91,949 4069 4152 3028 3060 5298 5168 4101 4049 32,925 124,874

Human_mRNA_
VZ_N

23,206 18,098 17,877 23,211 82,392 3825 3865 2824 2803 5035 4889 3830 3850 30,921 113,313

Human_mRNA_
YS_N

18,333 15,280 15,253 18,499 67,365 3134 3255 2322 2279 4172 4038 3204 3199 25,603 92,968

Human_mRNA_
AB_G

22,677 18,164 17,955 22,700 81,496 3785 3797 3340 3365 4702 4605 3799 3840 31,233 112,729

Human_mRNA_
TG_G

17,891 14,885 14,971 17,824 65,571 3101 3146 2778 2740 3963 3825 3080 3164 25,797 91,368

Human_mRNA_
VZ_G

28,066 23,315 23,117 28,012 102,510 4978 5198 4612 4653 6187 6016 5126 5004 41,774 144,284

Human_mRNA_
YS_G

16,090 14,008 13,905 16,040 60,043 2971 3000 2509 2466 3760 3681 2886 3027 24,300 84,343

Mouse_mRNA_AB_
N

1868 1186 1205 1833 6092 342 386 428 460 362 377 372 340 3067 9159

Mouse_mRNA_VZ_
N

2612 1416 1484 2582 8094 424 448 548 531 403 371 457 408 3590 11,684

Mouse_mRNA_YS_
N

1998 1311 1263 1989 6561 346 400 387 401 312 274 363 314 2797 9358

Mouse_mRNA_AB_
G

2252 1328 1402 2100 7082 428 456 1069 1025 381 379 439 400 4577 11,659

Mouse_mRNA_VZ_
G

2871 1721 1687 2778 9057 620 809 1189 1109 538 524 818 632 6239 15,296

Mouse_mRNA_YS_
G

2054 1063 1046 1902 6065 296 253 711 719 273 268 291 270 3081 9146

Note: A- > G means base A mutation as base G, Transition are interchanges of two-ring purines (A- > G and G- > A) or of one-ring pyrimidines
(C- > T and T- > C), Transversions are interchanges of purine for pyrimidine bases, which therefore involve exchange of one-ring and two-ring structures.
AB_, VZ_, YS_,TG_ means library kits from four companies, N and G means Novaseq 6000 and GenoLab M
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transcribed into RNA messengers to affect subsequent
protein function. Therefore, we examined the compe-
tency of the GenoLab M sequencing platform to detect
SNP and InDel variations at the mRNA level. Regarding
SNP detection, we found that SNPs called from the two
sequencing platforms (Table 2) were highly similar in
both variety and quantity. The largest difference is that
the GenoLab M platform identified slightly more SNP
events in mice than NovaSeq 6000 on average.
For InDel events, GenoLab M detected less of them

than the NovaSeq 6000 in bean, human and mouse
(Table 3). The closest InDel number was in bean sample
prepared with Vazyme Biotech (VZ) transcriptome li-
brary kit, while significant difference was observed in
mouse via Yeasen Biotechnology (YS) transcriptome li-
brary kit. These results suggest that GenoLab M has
slightly inferior in InDel detection, probably due to
shorter read length in this study.

Discussion
With the advantages of high-throughput and low cost,
NGS is becoming a powerful tool for scientific and clin-
ical research. Increased sequencing accessibility and
flexibility have not only broadened NGS applications,
but also led to the development of novel sequencing
platforms and sequencing methods in turn [30].

Currently, Illumina’s sequencers are the globally leading
sequencing platform. The NovaSeq 6000, its most
powerful instrument, has prominent properties of lower
error rate and less variation compared to other se-
quencers in the Illumina series [31]. It is able to generate
6 TB of sequencing data in a single run with a running
cost between 12 and 18 USD/Gb [32]. GenoLab M, the
new sequencer of GeneMind, can generate 300 Gb of se-
quence data in a single run with price per Gb cost less
than half of that. In this study, we generated large tran-
script and LncRNA datasets from the two sequencing
platforms across three model species (human: 4 mRNA,
3 LncRNA; mouse: 3 mRNA, 3 LncRNA; bean: 3
mRNA). Next, we compared the datasets obtained from
the two platforms. To make our study as comprehensive
as possible, we compared the quality of data, distribution
of reads, gene expression, AS, SNP and InDel of the two
platforms.
Our analysis of the data generated from two platforms

showed that sequences from both instruments were of
comparable quality with the exception that NovaSeq
6000 reads showed slightly higher Q20 percentage than
GenoLab M. We are confident that higher quality data
from GenoLab M are attainable through instrument
hardware, software and reagent kit updates, given that
the instrument was launched just last year [33, 34].

Table 3 Summary of InDel identifcation and effect type

Sample Intergenic Intron Upstream Downstream CDS Other Total

Bean_mRNA_AB_N 117 2609 4131 3784 936 5914 17,491

Bean_mRNA_VZ_N 94 2363 3972 3406 889 5667 16,391

Bean_mRNA_YS_N 92 2116 3578 3096 727 5150 14,759

Bean_mRNA_AB_G 76 1887 3078 2770 663 4593 13,067

Bean_mRNA_VZ_G 102 2172 3656 3079 730 5162 14,901

Bean_mRNA_YS_G 57 1328 2370 2163 486 3878 10,282

Human_mRNA_AB_N 569 6704 1402 3529 112 5243 17,559

Human_mRNA_TG_N 598 6378 1597 3737 142 5592 18,044

Human_mRNA_VZ_N 607 5636 1376 3177 121 4882 15,799

Human_mRNA_YS_N 310 3578 1110 2628 73 4296 11,995

Human_mRNA_AB_G 334 3836 779 2336 71 3817 11,173

Human_mRNA_TG_G 248 2705 645 1973 78 3523 9172

Human_mRNA_VZ_G 459 4929 1125 2743 91 4217 13,564

Human_mRNA_YS_G 194 2062 605 1713 53 3099 7726

Mouse_mRNA_AB_N 480 2323 846 786 23 1866 6324

Mouse_mRNA_VZ_N 728 3194 1124 1012 35 2320 8413

Mouse_mRNA_YS_N 381 1444 640 581 18 1507 4571

Mouse_mRNA_AB_G 295 1385 519 532 16 1299 4046

Mouse_mRNA_VZ_G 415 1752 606 607 26 1544 4950

Mouse_mRNA_YS_G 119 533 257 278 7 694 1888

Note: CDS contains Start Lost, Frame Shift, Codon Deletion, Codon Insertion, Codon Change Plus Codon Deletion, Codon Change Plus Codon Insertion, and Stop
Gained.AB_, VZ_, YS_,TG_ means library kits from four companies, N and G means Novaseq 6000 and GenoLab M
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Gene expression has always been an important part of
the research on transcriptome and LncRNA [34]. In the
comparison of transcriptome genes expression, we found
that there was no significant quality difference between
the two platforms, and the correlation analysis showed
high consistency. This indicates that GenoLab M can
achieve a similar level of mRNA detection as NovaSeq
6000 and is suitable for use with the same library kits
designed for Illumina sequencing. This compatibility en-
ables users to test the sequencing platform with mini-
mum transition cost and generate high quality
sequencing data. We believe that this would make tran-
scriptome sequencing more accessible for researchers.
However, in the LncRNA area, we found that GenoLab
M’s performance had a small gap compared to NovaSeq
6000 in terms of gene expression correlation. We think
sequencing read length may impact the LncRNA detec-
tion rate [35]. We plan to conduct further laboratory
tests to determine the cause of this difference.
Our experimental results proved that GenoLab M

could obtain equivalent data quality as NovaSeq 6000, in
both mRNA and LncRNA level with 7 library prepar-
ation kits from 4 companies. This suggests that GenoLab
M can be a viable substitute for NovaSeq 6000 in the
RNA sequencing. However, our study does lack bio-
logical repeats, which could be supplemented in further
work. We also realize that we still need to increase the
number of samples and species to further demonstrate
the reliability of the GenoLab M platform. In the future,
we plan to work with more researchers in broader appli-
cation areas to verify the capability and stability of the
platform.

Conclusions
In summary, we highlight that both GenoLab M and
NovaSeq 6000 sequencing platforms have similar and
comparable performance metrics (sensitivity and accur-
acy) and can capture genes, AS, and SNP at transcrip-
tome and LncRNA levels. The GenoLab M offers a cost-
effective alternative to the NovaSeq 6000 platform with
similar data quality.
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